Article Overview
Abstract:
In this paper, an approximate solution for Fornberg-Whitham Equation by using the q-homotopy analysis method (q-HAM) was proposed. The q-homotopy analysis method contains the convergence control parameter n, which provides us with a simple way to adjust and control the convergence region of rate series solution. Comparison of the results with the exact solution shows the accuracy of the q-HAM.
Keywords: q-homotopy analysis method, Fornberg-Whitham Equation.
Reference
- Zhou J. and Tian L., A type of bounded traveling wave solutions for the Fornberg Whitham equation, J. Math. Anal. Appl. 346 (2008) 255-261.
- El-Tawil M. A. and HuseenS.N., On Convergence of The q-Homotopy Analysis Method, Int. J. Contemp. Math. Sciences, Vol. 8, 2013, no. 10, 481 – 497.
- Whitham G.B., Variational methods and applications to water wave, Proc. R. Soc. Lond. A299 (1967) 6-25.
- Iyiola O. S., Ojo, G. O. and Audu, J. D., A Comparison Results of Some Analytical Solutions of Model in Double Phase Flow through Porous Media, Journal of Mathematics and System Science 4 (2014) 275-284.
- Liao S. J., Proposed homotopy analysis techniques for the solution of nonlinear problems, Ph.D. dissertation, Shanghai Jiao Tong University, Shanghai, 1992.
- Liao S. J., An approximate solution technique which does not depend upon small parameters: a special example, Int. J. Non-linear Mech. 30:371-380(1995).
- Liao S. J., An approximate solution technique which does not depend upon small parameters (Part 2): an application in fluid mechanics, Int. J. Non-linear Mech. 32:815- 822(1997).
- Liao S. J., An explicit, totally analytic approximation of Blasius viscous flow problem, Int. J. Non-Linear Mech. 34:759-778(1999).
- Liao S. J., A uniformly valid analytic solution of 2D viscous flow past a semi-infinite flat plate. J. Fluid Mech. 385:101-128(1999).
- Liao S. J., A. Campo, Analytic solutions of the temperature distribution in Blasius viscous flow problems, J. Fluid Mech. 453:411-425(2002).
- Liao S. J., An explicit analytic solution to the Thomas-Fermi equation, Appl. Math. Comput. 144: 495-506(2003).
- Liao S. J., On the analytic solution of magneto hydro dynamic flows of non Newtonian fluids over a stretching sheet, J. Fluid Mech. 488:189-212(2003)
- Liao S. J., On the homotopy analysis method for nonlinear problems, Appl. Math. Comput.147: 499-513(2004).
- Liao S. J. and Magyari E., Exponentially decaying boundary layers as limiting cases of families of algebraically decaying ones, Z. Angew. Math. Phys. 57:777-792(2006).
- Fornberg B. and Whitham G.B., A numerical and theoretical study of certain nonlinear wave phenomena, Phil. Trans. R. Soc. Lond. A 289 (1978) 373-404.
- Huseen S. N. and Grace, S. R. 2013, Approximate Solutions of Nonlinear Partial Differential Equations by Modified q-Homotopy Analysis Method (mq-HAM), Hindawi Publishing Corporation, Journal of Applied Mathematics, Article ID 569674, 9 pages http:// dx.doi.org/10.1155/ 2013/ 569674.
- El-Tawil M. A. and Huseen S.N., The q-Homotopy Analysis Method (q-HAM), International Journal of Applied mathematics and mechanics, 8 (15): 51-75, 2012.
- Huseen S. N., Grace S. R. and El-Tawil M. A. 2013, The Optimal q-Homotopy Analysis Method (Oq-HAM), International Journal of Computers & Technology, Vol 11, No. 8.
- Huseen S. N., Solving the K(2,2) Equation by Means of the q-Homotopy Analysis Method (q-HAM), International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 8, August 2015.
- Huseen S. N., Series Solutions of Fractional Initial-Value Problems by q-Homotopy Analysis Method, International Journal of Innovative Science, Engineering & Technology, Vol. 3 Issue 1, January 2016.
- Huseen Shaheed N. Application of optimal q-homotopy analysis method to second order initial and boundary value problems. Int J Sci Innovative Math Res (IJSIMR) 2015; 3(1):18–24.
- Huseen S. N., A Numerical Study of One-Dimensional HyperbolicTelegraph Equation, Journal of Mathematics and System Science 7 (2017) 62-72.
- Iyiola O. S., Soh, M. E. and Enyi, C. D. 2013, Generalized Homotopy Analysis Method (q-HAM) For Solving Foam Drainage Equation of Time Fractional Type, Mathematics in Engineering, Science & Aerospace (MESA), Vol. 4, Issue 4, p. 429-440.
- Iyiola O. S., Ojo, G. O. and Audu, J. D., A Comparison Results of Some Analytical Solutions of Model in Double Phase Flow through Porous Media, Journal of Mathematics and System Science 4 (2014) 275-284.
- Liao S. J. and Tan Y., A general approach to obtain series solutions of nonlinear differential equations, Stud. Appl. Math. 119:297-354(2007).
- Liao S. J., A general approach to get series solution of non-similarity boundary-layer flows, Commun. Nonlinear Sci. Numer. Simulat. 14:2144-2159(2009).
- Liao S. J., Beyond perturbation: Introduction to the homotopy analysis method, CRC pressLLC, Boca Raton, 2003.
- Mahmoudi Y. and Kazemian M., Some Notes on Homotopy Analysis Method for Solving the Fornberg-Whitham Equation, J. Basic. Appl. Sci. Res., 2(3)2985-2990, 2012.