Article Overview
The global economic impact of the five leading chronic diseases — cancer, diabetes, mental illness, CVD, and respiratory disease — could reach $47 trillion over the next 20 years, according to a study by the World Economic Forum (WEF). According to the WHO, 80% of the world's population primarily those of developing countries rely on plant-derived medicines for healthcare. The purported efficacies of seaweed derived phytochemicals areshowing great potential in obesity, T2DM, metabolic syndrome, CVD, IBD, sexual dysfunction and some cancers. Therefore, WHO, UN-FAO, UNICEF and governments have shown a growing interest in these unconventional foods with health-promoting effects. Edible marine macro-algae (seaweed) are of interest because of their value in nutrition and medicine. Seaweeds contain several bioactive substances like polysaccharides, proteins, lipids, polyphenols, and pigments, all of which may have beneficial health properties. People consume seaweed as food in various forms: raw as salad and vegetable, pickle with sauce or with vinegar, relish or sweetened jellies and also cooked for vegetable soup. By cultivating seaweed, coastal people are getting an alternative livelihood as well as advancing their lives. In 2005, world seaweed production totaled 14.7 million tons whichhas more than doubled (30.4 million tons) in 2015. The present market value is nearly $6.5 billion and is projected to reach some $9 billion in the seaweed global market by 2024. Aquaculture is recognized as the most sustainable means of seaweed production and accounts for approximately 27.3 million tons (more than 90%) of global seaweed production per annum. Asian countries produced 80% for world markets where China alone produces half of the total demand. The top six seaweed producing countries are China, Indonesia, Philippines, Korea, and Japan.
Keywords:seaweeds; cancer prevention; hyperglycemia management; microalgae; neuroprotection; alimentary disorders.
Reference
- Ma RCW, Schmidt MI, Tam WH, McIntyre HD, Catalano PM. Clinical management of pregnancy in the obese mother: before conception, during pregnancy, and post partum. Lancet Diabetes Endocrinol. 2016 Dec;4(12):1037-1049. doi: 10.1016/S2213-8587(16)30278-9. Epub 2016 Oct 12. Review. PubMed PMID: 27743977.
- Panuganti KK, Gossman WG. Obesity. [Updated 2019 May 15]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2019 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459357/
- Dagne S, Gelaw YA, Abebe Z, Wassie MM. Factors associated with overweight and obesity among adults in northeast Ethiopia: a cross-sectional study. Diabetes Metab Syndr Obes. 2019 Mar 22;12:391-399. doi: 10.2147/DMSO.S179699. eCollection 2019. PubMed PMID: 30962699; PubMed Central PMCID: PMC6434910.
- Wan-Loy C, Siew-Moi P. Marine Algae as a Potential Source for Anti-Obesity Agents. Mar Drugs. 2016 Dec 7;14(12). pii: E222. Review. PubMed PMID: 27941599; PubMed Central PMCID: PMC5192459.
- Chater PI, Wilcox M, Cherry P, Herford A, Mustar S, Wheater H, Brownlee I, Seal C, Pearson J. Inhibitory activity of extracts of Hebridean brown seaweeds on lipase activity. J Appl Phycol. 2016;28:1303-1313. Epub 2015 May 26. PubMed PMID: 27057089; PubMed Central PMCID: PMC4789227.
- Tran VC, Cho SY, Kwon J, Kim D. Alginate oligosaccharide (AOS) improves immuno-metabolic systems by inhibiting STOML2 overexpression in high-fat-diet-induced obese zebrafish. Food Funct. 2019 Jul 10. doi: 10.1039/c9fo00982e. [Epub ahead of print] PubMed PMID: 31290903.
- Wang X, Liu F, Gao Y, Xue CH, Li RW, Tang QJ. Transcriptome analysis revealed anti-obesity effects of the Sodium Alginate in high-fat diet -induced obese mice. Int J Biol Macromol. 2018 Aug;115:861-870. doi: 10.1016/j.ijbiomac.2018.04.042. Epub 2018 Apr 10. PubMed PMID: 29649537.
- Koo SY, Hwang JH, Yang SH, Um JI, Hong KW, Kang K, Pan CH, Hwang KT, Kim SM. Anti-Obesity Effect of Standardized Extract of Microalga Phaeodactylum tricornutum Containing Fucoxanthin. Mar Drugs. 2019 May 27;17(5). pii: E311. doi: 10.3390/md17050311. PubMed PMID: 31137922; PubMed Central PMCID: PMC6562887.
- Mikami N, Hosokawa M, Miyashita K, Sohma H, Ito YM, Kokai Y. Reduction of HbA1c levels by fucoxanthin-enriched akamoku oil possibly involves the thrifty allele of uncoupling protein 1 (UCP1): a randomised controlled trial in normal-weight and obese Japanese adults. J Nutr Sci. 2017 Feb 14;6:e5. doi: 10.1017/jns.2017.1. eCollection 2017. PubMed PMID: 28620480; PubMed Central PMCID: PMC5465861.
- Mendez R, Miranda C, Armour C, Sharpton T, Stevens JF, Kwon J. Antiobesogenic Potential of Seaweed Dulse (Palmaria palmata) in High-fat Fed C57BL/6 J Mice (P21-014-19), Current Developments in Nutrition, Volume 3, Issue Supplement_1, June 2019, nzz041.P21–014–19, https://doi.org/10.1093/cdn/nzz041.P21-014-19
- Seca AML, Pinto DCGA. Overview on the Antihypertensive and Anti-Obesity Effects of Secondary Metabolites from Seaweeds. Mar Drugs. 2018 Jul 14;16(7). pii: E237. doi: 10.3390/md16070237. Review. PubMed PMID: 30011911; PubMed Central PMCID: PMC6070913.
- Yang Z, Liu G, Wang Y, Yin J, Wang J, Xia B, Li T, Yang X, Hou P, Hu S, Song W, Guo S. Fucoidan A2 from the Brown Seaweed Ascophyllum nodosum Lowers Lipid by Improving Reverse Cholesterol Transport in C57BL/6J Mice Fed a High-Fat Diet. J Agric Food Chem. 2019 May 22;67(20):5782-5791. doi: 10.1021/acs.jafc.9b01321. Epub 2019 May 13. PubMed PMID: 31055921.
- Sørensen LE, Jeppesen PB, Christiansen CB, Hermansen K, Gregersen S. Nordic Seaweed and Diabetes Prevention: Exploratory Studies in KK-Ay Mice. Nutrients. 2019 Jun 25;11(6). pii: E1435. doi: 10.3390/nu11061435. PubMed PMID: 31242682; PubMed Central PMCID: PMC6627585.
- Wright CM, Bezabhe W, Fitton JH, Stringer DN, Bereznicki LRE, Peterson GM. Effect of a Fucoidan Extract on Insulin Resistance and Cardiometabolic Markers in Obese, Nondiabetic Subjects: A Randomized, Controlled Trial. J Altern Complement Med. 2019 Mar;25(3):346-352. doi: 10.1089/acm.2018.0189. Epub 2018 Oct 12. PubMed PMID: 30312135.
- Ahn JH, Shin MC, Kim DW, Kim H, Song M, Lee TK, Lee JC, Kim H, Cho JH, Kim YM, Kim JD, Choi SY, Won MH, Park JH. Antioxidant Properties of Fucoidan Alleviate Acceleration and Exacerbation of Hippocampal Neuronal Death Following Transient Global Cerebral Ischemia in High-Fat Diet-Induced Obese Gerbils. Int J Mol Sci. 2019 Jan 28;20(3). pii: E554. doi: 10.3390/ijms20030554. PubMed PMID: 30696078; PubMed Central PMCID: PMC6387260.
- Wang Y, Xing M, Cao Q, Ji A, Liang H, Song S. Biological Activities of Fucoidan and the Factors Mediating Its Therapeutic Effects: A Review of Recent Studies. Mar Drugs. 2019 Mar 20;17(3). pii: E183. doi: 10.3390/md17030183. Review. PubMed PMID: 30897733; PubMed Central PMCID: PMC6471298.
- Kim MJ, Jeon J, Lee JS. Fucoidan prevents high-fat diet-induced obesity in animals by suppression of fat accumulation. Phytother Res. 2014 Jan;28(1):137-43. doi: 10.1002/ptr.4965. Epub 2013 Apr 12. PubMed PMID: 23580241.
- Sudirman S, Ong AD, Chang HW, Kong ZL. Effect of Fucoidan on Anterior Cruciate Ligament Transection and Medial Meniscectomy Induced Osteoarthritis in High-Fat Diet-Induced Obese Rats. Nutrients. 2018 May 28;10(6). pii: E686. doi: 10.3390/nu10060686. PubMed PMID: 29843440; PubMed Central PMCID: PMC6024650.
- Oliveira RM, Câmara RBG, Monte JFS, Viana RLS, Melo KRT, Queiroz MF, Filgueira LGA, Oyama LM, Rocha HAO. Commercial Fucoidans from Fucus vesiculosus Can Be Grouped into Antiadipogenic and Adipogenic Agents. Mar Drugs. 2018 Jun 4;16(6). pii: E193. doi: 10.3390/md16060193. PubMed PMID: 29867001; PubMed Central PMCID: PMC6025566.
- Catarino MD, Silva AMS, Mateus N, Cardoso SM. Optimization of Phlorotannins Extraction from Fucus vesiculosus and Evaluation of Their Potential to Prevent Metabolic Disorders. Mar Drugs. 2019 Mar 8;17(3). pii: E162. doi: 10.3390/md17030162. PubMed PMID: 30857204; PubMed Central PMCID: PMC6471631.
- Catarino MD, Silva AMS, Cardoso SM. Fucaceae: A Source of Bioactive Phlorotannins. Int J Mol Sci. 2017 Jun 21;18(6). pii: E1327. doi: 10.3390/ijms18061327. Review. PubMed PMID: 28635652; PubMed Central PMCID: PMC5486148.
- Sun S, Xu X, Sun X, Zhang X, Chen X, Xu N. Preparation and Identification of ACE Inhibitory Peptides from the Marine Macroalga Ulva intestinalis. Mar Drugs. 2019 Mar 19;17(3). pii: E179. doi: 10.3390/md17030179. PubMed PMID: 30893907; PubMed Central PMCID: PMC6471128.
- Nagappan H, Pee PP, Kee SHY, Ow JT, Yan SW, Chew LY, Kong KW. Malaysian brown seaweeds Sargassum siliquosum and Sargassum polycystum: Low density lipoprotein (LDL) oxidation, angiotensin converting enzyme (ACE), α-amylase, and α-glucosidase inhibition activities. Food Res Int. 2017 Sep;99(Pt 2):950-958. doi: 10.1016/j.foodres.2017.01.023. Epub 2017 Jan 27. PubMed PMID: 28847432.
- Paiva L, Lima E, Neto AI, Baptista J. Angiotensin I-Converting Enzyme (ACE) Inhibitory Activity, Antioxidant Properties, Phenolic Content and Amino Acid Profiles of Fucus spiralis L. Protein Hydrolysate Fractions. Mar Drugs. 2017 Oct 13;15(10). pii: E311. doi: 10.3390/md15100311. PubMed PMID: 29027934; PubMed Central PMCID: PMC5666419.
- Seca AML, Pinto DCGA. Overview on the Antihypertensive and Anti-Obesity Effects of Secondary Metabolites from Seaweeds. Mar Drugs. 2018 Jul 14;16(7). pii: E237. doi: 10.3390/md16070237. Review. PubMed PMID: 30011911; PubMed Central PMCID: PMC6070913.
- Pangestuti R, Kim SK. Bioactive Peptide of Marine Origin for the Prevention and Treatment of Non-Communicable Diseases. Mar Drugs. 2017 Mar 9;15(3). pii: E67. doi: 10.3390/md15030067. Review. PubMed PMID: 28282929; PubMed Central PMCID: PMC5367024.
- Collins KG, Fitzgerald GF, Stanton C, Ross RP. Looking Beyond the Terrestrial: The Potential of Seaweed Derived Bioactives to Treat Non-Communicable Diseases. Mar Drugs. 2016 Mar 18;14(3). pii: E60. doi: 10.3390/md14030060. Review. PubMed PMID: 26999166; PubMed Central PMCID: PMC4820313.
- Gómez-Guzmán M, Rodríguez-Nogales A, Algieri F, Gálvez J. Potential Role of Seaweed Polyphenols in Cardiovascular-Associated Disorders. Mar Drugs. 2018 Jul 28;16(8). pii: E250. doi: 10.3390/md16080250. Review. PubMed PMID: 30060542; PubMed Central PMCID: PMC6117645.
- Majumder K, Wu J. Molecular targets of antihypertensive peptides: understanding the mechanisms of action based on the pathophysiology of hypertension. Int J Mol Sci. 2014 Dec 24;16(1):256-83. doi: 10.3390/ijms16010256. Review. PubMed PMID: 25547491; PubMed Central PMCID: PMC4307246.
- Kammoun I, Ben Salah H, Ben Saad H, Cherif B, Droguet M, Magné C, Kallel C, Boudawara O, Hakim A, Gharsallah N, Ben Amara I. Hypolipidemic and cardioprotective effects of Ulva lactuca ethanolic extract in hypercholesterolemic mice. Arch Physiol Biochem. 2018 Oct;124(4):313-325. doi: 10.1080/13813455.2017.1401641. Epub 2017 Nov 24. PubMed PMID: 29171301.
- Pengzhan Y, Ning L, Xiguang L, Gefei Z, Quanbin Z, Pengcheng L. Antihyperlipidemic effects of different molecular weight sulfated polysaccharides from Ulva pertusa (Chlorophyta). Pharmacol Res. 2003 Dec;48(6):543-9. PubMed PMID: 14527817.
- Wang R, Paul VJ, Luesch H. Seaweed extracts and unsaturated fatty acid constituents from the green alga Ulva lactuca as activators of the cytoprotective Nrf2-ARE pathway. Free Radic Biol Med. 2013 Apr;57:141-53. doi: 10.1016/j.freeradbiomed.2012.12.019. Epub 2013 Jan 4. PubMed PMID: 23291594; PubMed Central PMCID: PMC3663146.
- Yu Y, Li Y, Du C, Mou H, Wang P. Compositional and structural characteristics of sulfated polysaccharide from Enteromorpha prolifera. Carbohydr Polym. 2017 Jun 1;165:221-228. doi: 10.1016/j.carbpol.2017.02.011. Epub 2017 Feb 3. PubMed PMID: 28363544.
- Sharifuddin Y, Chin YX, Lim PE, Phang SM. Potential Bioactive Compounds from Seaweed for Diabetes Management. Mar Drugs. 2015 Aug 21;13(8):5447-91. doi: 10.3390/md13085447. Review. PubMed PMID: 26308010; PubMed Central PMCID: PMC4557030.
- Tair ZI, Bensalah F, Boukortt F. [Effect of green alga Ulva lactuca polysaccharides supplementation on blood pressure and on atherogenic risk factors, in rats fed a high fat diet]. Ann Cardiol Angeiol (Paris). 2018 Jun;67(3):133-140. doi: 10.1016/j.ancard.2018.04.016. French. PubMed PMID: 29776647.
- Lauritano C, Ianora A. Marine Organisms with Anti-Diabetes Properties. Mar Drugs. 2016 Dec 1;14(12). pii: E220. Review. PubMed PMID: 27916864; PubMed Central PMCID: PMC5192457.
- Mohapatra L, Bhattamishra SK, Panigrahy R, Parida S, Pati P. Antidiabetic effect of Sargassum wightii and Ulva fasciata in high fat diet and multi low dose streptozotocin induced type 2 diabetic mice. UK J Pharm Biosci. 2016;4:13–23. doi: 10.20510/ukjpb/4/i2/97081.
- Celikler S, Tas S, Vatan O, Ziyanok-Ayvalik S, Yildiz G, Bilaloglu R. Anti-hyperglycemic and antigenotoxic potential of Ulva rigida ethanolic extract in the experimental diabetes mellitus. Food Chem Toxicol. 2009 Aug;47(8):1837-40. doi: 10.1016/j.fct.2009.04.039. Epub 2009 May 5. PubMed PMID: 19422873.
- Hassan S, El-Twab SA, Hetta M, Mahmoud B. Improvement of lipid profile and antioxidant of hypercholesterolemic albino rats by polysaccharides extracted from the green alga Ulva lactuca Linnaeus. Saudi J Biol Sci. 2011 Oct;18(4):333-40. doi: 10.1016/j.sjbs.2011.01.005. Epub 2011 Feb 3. PubMed PMID: 23961145; PubMed Central PMCID: PMC3730952.
- BelHadj S, Hentati O, Elfeki A, Hamden K. Inhibitory activities of Ulva lactuca polysaccharides on digestive enzymes related to diabetes and obesity. Arch Physiol Biochem. 2013 May;119(2):81-7. doi: 10.3109/13813455.2013.775159. PubMed PMID: 23638862.
- Bocanegra A, Bastida S, Benedí J, Nus M, Sánchez-Montero JM, Sánchez-Muniz FJ. Effect of seaweed and cholesterol-enriched diets on postprandial lipoproteinaemia in rats. Br J Nutr. 2009 Dec;102(12):1728-39. doi: 10.1017/S000711450999105X. PubMed PMID: 19728895.
- Schultz Moreira AR, Olivero-David R, Vázquez-Velasco M, González-Torres L, Benedí J, Bastida S, Sánchez-Muniz FJ. Protective effects of sea spaghetti-enriched restructured pork against dietary cholesterol: effects on arylesterase and lipoprotein profile and composition of growing rats. J Med Food. 2014 Aug;17(8):921-8. doi: 10.1089/jmf.2013.0100. Epub 2014 Mar 20. PubMed PMID: 24650072.
- Nasir M, Saeidnia S, Mashinchian-Moradi A, Gohari AR. Sterols from the red algae, Gracilaria salicornia and Hypnea flagelliformis, from Persian Gulf. Pharmacogn Mag. 2011 Apr;7(26):97-100. doi: 10.4103/0973-1296.80663. PubMed PMID: 21716930; PubMed Central PMCID: PMC3113362.
- Gabbia D, Dall'Acqua S, Di Gangi IM, Bogialli S, Caputi V, Albertoni L, Marsilio I, Paccagnella N, Carrara M, Giron MC, De Martin S. The Phytocomplex from Fucus vesiculosus and Ascophyllum nodosum Controls Postprandial Plasma Glucose Levels: An In Vitro and In Vivo Study in a Mouse Model of NASH. Mar Drugs. 2017 Feb 15;15(2). pii: E41. doi: 10.3390/md15020041. PubMed PMID: 28212301; PubMed Central PMCID: PMC5334621.
- Kim MS, Kim JY, Choi WH, Lee SS. Effects of seaweed supplementation on blood glucose concentration, lipid profile, and antioxidant enzyme activities in patients with type 2 diabetes mellitus. Nutr Res Pract. 2008 Summer;2(2):62-7. doi: 10.4162/nrp.2008.2.2.62. Epub 2008 Jun 30. PubMed PMID: 20126367; PubMed Central PMCID: PMC2815322.
- Murray M, Dordevic AL, Ryan L, Bonham MP. The Impact of a Single Dose of a Polyphenol-Rich Seaweed Extract on Postprandial Glycaemic Control in Healthy Adults: A Randomised Cross-Over Trial. Nutrients. 2018 Feb 27;10(3). pii: E270. doi: 10.3390/nu10030270. PubMed PMID: 29495492; PubMed Central PMCID: PMC5872688.
- Tanemura Y, Yamanaka-Okumura H, Sakuma M, Nii Y, Taketani Y, Takeda E. Effects of the intake of Undaria pinnatifida (Wakame) and its sporophylls (Mekabu) on postprandial glucose and insulin metabolism. J Med Invest. 2014;61(3-4):291-7. PubMed PMID: 25264047.
- Haskell-Ramsay CF, Jackson PA, Dodd FL, Forster JS, Bérubé J, Levinton C, Kennedy DO. Acute Post-Prandial Cognitive Effects of Brown Seaweed Extract in Humans. Nutrients. 2018 Jan 13;10(1). pii: E85. doi: 10.3390/nu10010085. PubMed PMID: 29342865; PubMed Central PMCID: PMC5793313.
- Cherry P, O'Hara C, Magee PJ, McSorley EM, Allsopp PJ. Risks and benefits of consuming edible seaweeds. Nutr Rev. 2019 May 1;77(5):307-329. doi: 10.1093/nutrit/nuy066. PubMed PMID: 30840077; PubMed Central PMCID: PMC6551690.
- Gotama TL, Husni A, Ustadi. Antidiabetic Activity of Sargassum hystrix Extracts in Streptozotocin-Induced Diabetic Rats. Prev Nutr Food Sci. 2018 Sep;23(3):189-195. doi: 10.3746/pnf.2018.23.3.189. Epub 2018 Sep 30. PubMed PMID: 30386746; PubMed Central PMCID: PMC6195887.
- Lee CW, Han JS. Hypoglycemic Effect of Sargassum ringgoldianum Extract in STZ-induced Diabetic Mice. Prev Nutr Food Sci. 2012 Mar;17(1):8-13. doi: 10.3746/pnf.2012.17.1.008. PubMed PMID: 24471057; PubMed Central PMCID: PMC3866760.
- Yang HW, Fernando KHN, Oh JY, Li X, Jeon YJ, Ryu B. Anti-Obesity and Anti-Diabetic Effects of Ishige okamurae. Mar Drugs. 2019 Mar 29;17(4). pii: E202. doi: 10.3390/md17040202. Review. PubMed PMID: 30934943; PubMed Central PMCID: PMC6520893.
- Murray M, Dordevic AL, Ryan L, Bonham MP. A Single-Dose of a Polyphenol-Rich Fucus Vesiculosus Extract is Insufficient to Blunt the Elevated Postprandial Blood Glucose Responses Exhibited by Healthy Adults in the Evening: A Randomised Crossover Trial. Antioxidants (Basel). 2019 Feb 24;8(2). pii: E49. doi: 10.3390/antiox8020049. PubMed PMID: 30813480; PubMed Central PMCID: PMC6406275.
- Coe S, Ryan L. Impact of polyphenol-rich sources on acute postprandial glycaemia: a systematic review. J Nutr Sci. 2016 Jun 6;5:e24. doi: 10.1017/jns.2016.11. eCollection 2016. Review. PubMed PMID: 27547387; PubMed Central PMCID: PMC4976115.
- Murugan AC, Karim MR, Yusoff MB, Tan SH, Asras MF, Rashid SS. New insights into seaweed polyphenols on glucose homeostasis. Pharm Biol. 2015 Aug;53(8):1087-97. doi: 10.3109/13880209.2014.959615. Epub 2015 Jan 29. Review. PubMed PMID: 25630358.
- Yang Z, Yin J, Wang Y, Wang J, Xia B, Li T, Yang X, Hu S, Ji C, Guo S. The fucoidan A3 from the seaweed Ascophyllum nodosum enhances RCT-related genes expression in hyperlipidemic C57BL/6J mice. Int J Biol Macromol. 2019 Aug 1;134:759-769. doi: 10.1016/j.ijbiomac.2019.05.070. Epub 2019 May 14. PubMed PMID: 31100394.
- Kamunde C, Sappal R, Melegy TM. Brown seaweed (AquaArom) supplementation increases food intake and improves growth, antioxidant status and resistance to temperature stress in Atlantic salmon, Salmo salar. PLoS One. 2019 Jul 15;14(7):e0219792. doi: 10.1371/journal.pone.0219792. eCollection 2019. PubMed PMID: 31306449; PubMed Central PMCID: PMC6629153.
- Yang Z, Liu G, Wang Y, Yin J, Wang J, Xia B, Li T, Yang X, Hou P, Hu S, Song W, Guo S. Fucoidan A2 from the Brown Seaweed Ascophyllum nodosum Lowers Lipid by Improving Reverse Cholesterol Transport in C57BL/6J Mice Fed a High-Fat Diet. J Agric Food Chem. 2019 May 22;67(20):5782-5791. doi: 10.1021/acs.jafc.9b01321. Epub 2019 May 13. PubMed PMID: 31055921.
- Yone Y, Furuichi M, Urano K. Effects of wakame Undaria pinnatifida and Ascophyllum nodosum on absorption of dietary nutrients, and blood sugar and plasma free amino?N levels of red sea bream. Nippon Suisan Gakkaishi. 1986; 52: 1817.
- Dy Peñaflorida V, Golez NV, Peikflorida VD, Golez NV. Use of seaweed meals from Kappaphycus alvarezii and Gracilaria heteroclada as binders in diets for juvenile shrimp Penaeus monodon. Aquaculture 1996; 143: 393.
- Nakagawa H. Effect of dietary algae on improvement of lipid metabolism in fish. Biomed Pharmacother. 1997;51(8):345-8. Review. PubMed PMID: 9436528.
- Gille A, Stojnic B, Derwenskus F, Trautmann A, Schmid-Staiger U, Posten C, Briviba K, Palou A, Bonet ML, Ribot J. A Lipophilic Fucoxanthin-Rich Phaeodactylum tricornutum Extract Ameliorates Effects of Diet-Induced Obesity in C57BL/6J Mice. Nutrients. 2019 Apr 6;11(4). pii: E796. doi: 10.3390/nu11040796. PubMed PMID: 30959933; PubMed Central PMCID: PMC6521120.
- Jeon SM, Kim HJ, Woo MN, Lee MK, Shin YC, Park YB, Choi MS. Fucoxanthin-rich seaweed extract suppresses body weight gain and improves lipid metabolism in high-fat-fed C57BL/6J mice. Biotechnol J. 2010 Sep;5(9):961-9. doi: 10.1002/biot.201000215. PubMed PMID: 20845386.
- Chin YX, Mi Y, Cao WX, Lim PE, Xue CH, Tang QJ. A Pilot Study on Anti-Obesity Mechanisms of Kappaphycus Alvarezii: The Role of Native κ-Carrageenan and the Leftover Sans-Carrageenan Fraction. Nutrients. 2019 May 21;11(5). pii: E1133. doi: 10.3390/nu11051133. PubMed PMID: 31117266; PubMed Central PMCID: PMC6566674.
- Ha AW, Kim WK. The effect of fucoxanthin rich power on the lipid metabolism in rats with a high fat diet. Nutr Res Pract. 2013 Aug;7(4):287-93. doi: 10.4162/nrp.2013.7.4.287. Epub 2013 Aug 7. PubMed PMID: 23964316; PubMed Central PMCID: PMC3746163.
- Patil NP, Le V, Sligar AD, Mei L, Chavarria D, Yang EY, Baker AB. Algal Polysaccharides as Therapeutic Agents for Atherosclerosis. Front Cardiovasc Med. 2018 Oct 26;5:153. doi: 10.3389/fcvm.2018.00153. eCollection 2018. Review. PubMed PMID: 30417001; PubMed Central PMCID: PMC6214344.
- Wan X, Li T, Liu D, Chen Y, Liu Y, Liu B, Zhang H, Zhao C. Effect of Marine Microalga Chlorella pyrenoidosa Ethanol Extract on Lipid Metabolism and Gut Microbiota Composition in High-Fat Diet-Fed Rats. Mar Drugs. 2018 Dec 9;16(12). pii: E498. doi: 10.3390/md16120498. PubMed PMID: 30544856; PubMed Central PMCID: PMC6315526.
- Li TT, Liu YY, Wan XZ, Huang ZR, Liu B, Zhao C. Regulatory Efficacy of the Polyunsaturated Fatty Acids from Microalgae Spirulina platensis on Lipid Metabolism and Gut Microbiota in High-Fat Diet Rats. Int J Mol Sci. 2018 Oct 9;19(10). pii: E3075. doi: 10.3390/ijms19103075. PubMed PMID: 30304774; PubMed Central PMCID: PMC6213792.
- Yin J, Wang J, Li F, Yang Z, Yang X, Sun W, Xia B, Li T, Song W, Guo S. The fucoidan from the brown seaweed Ascophyllum nodosum ameliorates atherosclerosis in apolipoprotein E-deficient mice. Food Funct. 2019 Jul 31. doi: 10.1039/c9fo00619b. [Epub ahead of print] PubMed PMID: 31364648.
- Shijo Y, Maruyama C, Nakamura E, Nakano R, Shima M, Mae A, Okabe Y, Park S, Kameyama N, Hirai S. Japan Diet Intake Changes Serum Phospholipid Fatty Acid Compositions in Middle-Aged Men: A Pilot Study. J Atheroscler Thromb. 2019 Jan 1;26(1):3-13. doi: 10.5551/jat.43448. Epub 2018 Apr 12. PubMed PMID: 29643271; PubMed Central PMCID: PMC6308266.
- Zhao B, Cui Y, Fan X, Qi P, Liu C, Zhou X, Zhang X. Anti-obesity effects of Spirulina platensis protein hydrolysate by modulating brain-liver axis in high-fat diet fed mice. PLoS One. 2019 Jun 20;14(6):e0218543. doi: 10.1371/journal.pone.0218543. eCollection 2019. PubMed PMID: 31220177; PubMed Central PMCID: PMC6586325.
- Coué M, Tesse A, Falewée J, Aguesse A, Croyal M, Fizanne L, Chaigneau J, Boursier J, Ouguerram K. Spirulina Liquid Extract Protects against Fibrosis Related to Non-Alcoholic Steatohepatitis and Increases Ursodeoxycholic Acid. Nutrients. 2019 Jan 18;11(1). pii: E194. doi: 10.3390/nu11010194. PubMed PMID: 30669332; PubMed Central PMCID: PMC6357008.
- Huang H, Liao D, Pu R, Cui Y. Quantifying the effects of spirulina supplementation on plasma lipid and glucose concentrations, body weight, and blood pressure. Diabetes Metab Syndr Obes. 2018 Nov 14;11:729-742. doi: 10.2147/DMSO.S185672. eCollection 2018. PubMed PMID: 30532573; PubMed Central PMCID: PMC6241722.
- Masuda K, Chitundu M. Multiple micronutrient supplementation using spirulina platensis and infant growth, morbidity, and motor development: Evidence from a randomized trial in Zambia. PLoS One. 2019 Feb 13;14(2):e0211693. doi: 10.1371/journal.pone.0211693. eCollection 2019. PubMed PMID: 30759117; PubMed Central PMCID: PMC6373937.
- Hu J, Li Y, Pakpour S, Wang S, Pan Z, Liu J, Wei Q, She J, Cang H, Zhang RX. Dose Effects of Orally Administered Spirulina Suspension on Colonic Microbiota in Healthy Mice. Front Cell Infect Microbiol. 2019 Jul 5;9:243. doi: 10.3389/fcimb.2019.00243. eCollection 2019. PubMed PMID: 31334136; PubMed Central PMCID: PMC6624478.
- Hernández-Lepe MA, Wall-Medrano A, López-Díaz JA, Juárez-Oropeza MA, Hernández-Torres RP, Ramos-Jiménez A. Hypolipidemic Effect of Arthrospira (Spirulina) maxima Supplementation and a Systematic Physical Exercise Program in Overweight and Obese Men: A Double-Blind, Randomized, and Crossover Controlled Trial. Mar Drugs. 2019 May 7;17(5). pii: E270. doi: 10.3390/md17050270. PubMed PMID: 31067674; PubMed Central PMCID: PMC6562443.
- Kim JY, Kwon YM, Kim IS, Kim JA, Yu DY, Adhikari B, Lee SS, Choi IS, Cho KK. Effects of the Brown Seaweed Laminaria japonica Supplementation on Serum Concentrations of IgG, Triglycerides, and Cholesterol, and Intestinal Microbiota Composition in Rats. Front Nutr. 2018 Apr 12;5:23. doi: 10.3389/fnut.2018.00023. eCollection 2018. PubMed PMID: 29707542; PubMed Central PMCID: PMC5906548.
- Barros-Gomes JAC, Nascimento DLA, Silveira ACR, Silva RK, Gomes DL, Melo KRT, Almeida-Lima J, Camara RBG, Silva NB, Rocha HAO. In Vivo Evaluation of the Antioxidant Activity and Protective Action of the Seaweed Gracilaria birdiae. Oxid Med Cell Longev. 2018 Aug 1;2018:9354296. doi: 10.1155/2018/9354296. eCollection 2018. PubMed PMID: 30154951; PubMed Central PMCID: PMC6093003.
- López-Rios L, Vega T, Chirino R, Jung JC, Davis B, Pérez-Machín R, Wiebe JC. Toxicological assessment of Xanthigen(®) nutraceutical extract combination: Mutagenicity, genotoxicity and oral toxicity. Toxicol Rep. 2018 Oct 9;5:1021-1031. doi: 10.1016/j.toxrep.2018.10.007. eCollection 2018. PubMed PMID: 30386730; PubMed Central PMCID: PMC6205089.
- Wanyonyi S, du Preez R, Brown L, Paul NA, Panchal SK. Kappaphycus alvarezii as a Food Supplement Prevents Diet-Induced Metabolic Syndrome in Rats. Nutrients. 2017 Nov 17;9(11). pii: E1261. doi: 10.3390/nu9111261. PubMed PMID: 29149029; PubMed Central PMCID: PMC5707733.
- Mikami N, Hosokawa M, Miyashita K, Sohma H, Ito YM, Kokai Y. Reduction of HbA1c levels by fucoxanthin-enriched akamoku oil possibly involves the thrifty allele of uncoupling protein 1 (UCP1): a randomised controlled trial in normal-weight and obese Japanese adults. J Nutr Sci. 2017 Feb 14;6:e5. doi: 10.1017/jns.2017.1. eCollection 2017. PubMed PMID: 28620480; PubMed Central PMCID: PMC5465861.
- Seo YJ, Lee K, Chei S, Jeon YJ, Lee BY. Ishige okamurae Extract Ameliorates the Hyperglycemia and Body Weight Gain of db/db Mice through Regulation of the PI3K/Akt Pathway and Thermogenic Factors by FGF21. Mar Drugs. 2019 Jul 9;17(7). pii: E407. doi: 10.3390/md17070407. PubMed PMID: 31323977.
- Sakai C, Abe S, Kouzuki M, Shimohiro H, Ota Y, Sakinada H, Takeuchi T, Okura T, Kasagi T, Hanaki K. A Randomized Placebo-controlled Trial of an Oral Preparation of High Molecular Weight Fucoidan in Patients with Type 2 Diabetes with Evaluation of Taste Sensitivity. Yonago Acta Med. 2019 Mar 28;62(1):14-23. eCollection 2019 Mar. PubMed PMID: 30962740; PubMed Central PMCID: PMC6437402.
- Choi J, Kim KJ, Koh EJ, Lee BY. Gelidium elegans Extract Ameliorates Type 2 Diabetes via Regulation of MAPK and PI3K/Akt Signaling. Nutrients. 2018 Jan 6;10(1). pii: E51. doi: 10.3390/nu10010051. PubMed PMID: 29316644; PubMed Central PMCID: PMC5793279.
- Maeda H, Fukuda S, Izumi H, Saga N. Anti-Oxidant and Fucoxanthin Contents of Brown Alga Ishimozuku (Sphaerotrichia divaricata) from the West Coast of Aomori, Japan. Mar Drugs. 2018 Jul 30;16(8). pii: E255. doi: 10.3390/md16080255. PubMed PMID: 30061511; PubMed Central PMCID: PMC6117725.
- McMacken M, Shah S. A plant-based diet for the prevention and treatment of type 2 diabetes. J Geriatr Cardiol. 2017 May;14(5):342-354. doi: 10.11909/j.issn.1671-5411.2017.05.009. Review. PubMed PMID: 28630614; PubMed Central PMCID: PMC5466941.
- Takahashi K, Kamada C, Yoshimura H, Okumura R, Iimuro S, Ohashi Y, Araki A, Umegaki H, Sakurai T, Yoshimura Y, Ito H; Japanese Elderly Diabetes Intervention Trial Study Group. Effects of total and green vegetable intakes on glycated hemoglobin A1c and triglycerides in elderly patients with type 2 diabetes mellitus: the Japanese Elderly Intervention Trial. Geriatr Gerontol Int. 2012 Apr;12 Suppl 1:50-8. doi: 10.1111/j.1447-0594.2011.00812.x. PubMed PMID: 22435940.
- Motshakeri M, Ebrahimi M, Goh YM, Matanjun P, Mohamed S. Sargassum polycystum reduces hyperglycaemia, dyslipidaemia and oxidative stress via increasing insulin sensitivity in a rat model of type 2 diabetes. J Sci Food Agric. 2013 May;93(7):1772-8. doi: 10.1002/jsfa.5971. Epub 2012 Dec 4. PubMed PMID: 23208488.
- Motshakeri M, Ebrahimi M, Goh YM, Othman HH, Hair-Bejo M, Mohamed S. Effects of Brown Seaweed (Sargassum polycystum) Extracts on Kidney, Liver, and Pancreas of Type 2 Diabetic Rat Model. Evid Based Complement Alternat Med. 2014;2014:379407. doi: 10.1155/2014/379407. Epub 2014 Jan 8. PubMed PMID: 24516503; PubMed Central PMCID: PMC3910465.
- Johnson J. What are the benefits of seaweed? MedicalNewsToday, 6 December 2018.
- Son M, Oh S, Lee HS, Ryu B, Jiang Y, Jang JT, Jeon YJ, Byun K. Pyrogallol-Phloroglucinol-6,6'-Bieckol from Ecklonia cava Improved Blood Circulation in Diet-Induced Obese and Diet-Induced Hypertension Mouse Models. Mar Drugs. 2019 May 8;17(5). pii: E272. doi: 10.3390/md17050272. PubMed PMID: 31071969; PubMed Central PMCID: PMC6562948.
- Wada K, Nakamura K, Tamai Y, Tsuji M, Sahashi Y, Watanabe K, Ohtsuchi S, Yamamoto K, Ando K, Nagata C. Seaweed intake and blood pressure levels in healthy pre-school Japanese children. Nutr J. 2011 Aug 10;10:83. doi: 10.1186/1475-2891-10-83. PubMed PMID: 21827710; PubMed Central PMCID: PMC3199754.
- Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH. Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol. 2017;29(2):949-982. doi: 10.1007/s10811-016-0974-5. Epub 2016 Nov 21. Review. PubMed PMID: 28458464; PubMed Central PMCID: PMC5387034.
- Gammone MA, Riccioni G, Parrinello G, D'Orazio N. Omega-3 Polyunsaturated Fatty Acids: Benefits and Endpoints in Sport. Nutrients. 2018 Dec 27;11(1). pii: E46. doi: 10.3390/nu11010046. Review. PubMed PMID: 30591639; PubMed Central PMCID: PMC6357022.
- Circuncisão AR, Catarino MD, Cardoso SM, Silva AMS. Minerals from Macroalgae Origin: Health Benefits and Risks for Consumers. Mar Drugs. 2018 Oct 23;16(11). pii: E400. doi: 10.3390/md16110400. Review. PubMed PMID: 30360515; PubMed Central PMCID: PMC6266857.
- Martínez-Villaluenga C, Peñas E, Rico D, Martin-Diana AB, Portillo MP, Macarulla MT, de Luis DA, Miranda J. Potential Usefulness of a Wakame/Carob Functional Snack for the Treatment of Several Aspects of Metabolic Syndrome: From In Vitro to In Vivo Studies. Mar Drugs. 2018 Dec 17;16(12). pii: E512. doi: 10.3390/md16120512. PubMed PMID: 30562926; PubMed Central PMCID: PMC6315385.
- Jung IH, Kim SE, Lee YG, Kim DH, Kim H, Kim GS, Baek NI, Lee DY. Antihypertensive Effect of Ethanolic Extract from Acanthopanax sessiliflorus Fruits and Quality Control of Active Compounds. Oxid Med Cell Longev. 2018 Apr 23;2018:5158243. doi: 10.1155/2018/5158243. eCollection 2018. PubMed PMID: 29849899; PubMed Central PMCID: PMC5937377.
- Kawamura A, Kajiya K, Kishi H, Inagaki J, Mitarai M, Oda H, Umemoto S, Kobayashi S. The Nutritional Characteristics of the Hypotensive WASHOKU-modified DASH Diet: A Sub-analysis of the DASH-JUMP Study. Curr Hypertens Rev. 2018;14(1):56-65. doi: 10.2174/1573402114666180405100430. PubMed PMID: 29618312; PubMed Central PMCID: PMC6094561.
- Fitzgerald C, Aluko RE, Hossain M, Rai DK, Hayes M. Potential of a renin inhibitory peptide from the red seaweed Palmaria palmata as a functional food ingredient following confirmation and characterization of a hypotensive effect in spontaneously hypertensive rats. J Agric Food Chem. 2014 Aug 20;62(33):8352-6. doi: 10.1021/jf500983n. Epub 2014 Aug 7. PubMed PMID: 25062358.
- Cardoso SM, Pereira OR, Seca AM, Pinto DC, Silva AM. Seaweeds as Preventive Agents for Cardiovascular Diseases: From Nutrients to Functional Foods. Mar Drugs. 2015 Nov 12;13(11):6838-65. doi: 10.3390/md13116838. Review. PubMed PMID: 26569268; PubMed Central PMCID: PMC4663556.
- Bleakley S, Hayes M. Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods. 2017 Apr 26;6(5). pii: E33. doi: 10.3390/foods6050033. Review. PubMed PMID: 28445408; PubMed Central PMCID: PMC5447909.
- Sellimi S, Ksouda G, Benslima A, Nasri R, Rinaudo M, Nasri M, Hajji M. Enhancing colour and oxidative stabilities of reduced-nitrite turkey meat sausages during refrigerated storage using fucoxanthin purified from the Tunisian seaweed Cystoseira barbata. Food Chem Toxicol. 2017 Sep;107(Pt B):620-629. doi: 10.1016/j.fct.2017.04.001. Epub 2017 Apr 4. PubMed PMID: 28389351.
- Heo S.-J., Jeon Y.-J. Evaluation of diphlorethohydroxycarmalol isolated from Ishige okamurae for radical scavenging activity and its protective effect against H2O2-induced cell damage. Process Biochem. 2009;44:412–418. doi: 10.1016/j.procbio.2008.12.005.
- Heo S.-J., Jeon Y.-J. Radical scavenging capacity and cytoprotective effect of enzymatic digests of Ishige okamurae. J. Appl. Phycol. 2008;20:1087–1095. doi: 10.1007/s10811-008-9320-x
- Kang M.-C., Lee S.-H., Lee W.-W., Kang N., Kim E.-A., Kim S.Y., Lee D.H., Kim D., Jeon Y.-J. Protective effect of fucoxanthin isolated from Ishige okamurae against high-glucose induced oxidative stress in human umbilical vein endothelial cells and zebrafish model. J. Funct. Foods. 2014;11:304–312. doi: 10.1016/j.jff.2014.09.007.
- Ahn S.-M., Hong Y.-K., Kwon G.-S., Sohn H.-Y. Evaluation of antioxidant and nitrite scavenging activity of seaweed extracts. J. Life Sci. 2011;21:576–583. doi: 10.5352/JLS.2011.21.4.576.
- Kang MC, Wijesinghe WA, Lee SH, Kang SM, Ko SC, Yang X, Kang N, Jeon BT, Kim J, Lee DH, Jeon YJ. Dieckol isolated from brown seaweed Ecklonia cava attenuates type ?? diabetes in db/db mouse model. Food Chem Toxicol. 2013 Mar;53:294-8. doi: 10.1016/j.fct.2012.12.012. Epub 2012 Dec 20. PubMed PMID: 23261675.
- Lee SH, Park MH, Kang SM, Ko SC, Kang MC, Cho S, Park PJ, Jeon BT, Kim SK, Han JS, Jeon YJ. Dieckol isolated from Ecklonia cava protects against high-glucose induced damage to rat insulinoma cells by reducing oxidative stress and apoptosis. Biosci Biotechnol Biochem. 2012;76(8):1445-51. Epub 2012 Aug 7. PubMed PMID: 22878185.
- Apostolidis E, Lee CM. In vitro potential of Ascophyllum nodosum phenolic antioxidant-mediated alpha-glucosidase and alpha-amylase inhibition. J Food Sci. 2010 Apr;75(3):H97-102. doi: 10.1111/j.1750-3841.2010.01544.x. PubMed PMID: 20492300.
- Maeda H. Nutraceutical effects of fucoxanthin for obesity and diabetes therapy: a review. J Oleo Sci. 2015;64(2):125-32. doi: 10.5650/jos.ess14226. Epub 2015 Jan 20. Review. PubMed PMID: 25748372.
- Manandhar B, Paudel P, Seong SH, Jung HA, Choi JS. Characterizing Eckol as a Therapeutic Aid: A Systematic Review. Mar Drugs. 2019 Jun 18;17(6). pii: E361. doi: 10.3390/md17060361. Review. PubMed PMID: 31216636; PubMed Central PMCID: PMC6627842.
- Kumar MS. Peptides and Peptidomimetics as Potential Antiobesity Agents: Overview of Current Status. Front Nutr. 2019 Feb 18;6:11. doi: 10.3389/fnut.2019.00011. eCollection 2019. Review. PubMed PMID: 30834248; PubMed Central PMCID: PMC6388543.
- Sanjeewa, K.K.A.; Lee, W.W.; Jeon, Y.J. Nutrients and bioactive potentials of edible green and red seaweed in Korea. Fish. Aquat. Sci. 2018, 21, 19.
- Savini I, Catani MV, Evangelista D, Gasperi V, Avigliano L. Obesity-associated oxidative stress: strategies finalized to improve redox state. Int J Mol Sci. 2013 May 21;14(5):10497-538. doi: 10.3390/ijms140510497. Review. PubMed PMID: 23698776; PubMed Central PMCID: PMC3676851.
- Gammone MA, D'Orazio N. Anti-obesity activity of the marine carotenoid fucoxanthin. Mar Drugs. 2015 Apr 13;13(4):2196-214. doi: 10.3390/md13042196. Review. PubMed PMID: 25871295; PubMed Central PMCID: PMC4413207.
- Maeda H, Kanno S, Kodate M, Hosokawa M, Miyashita K. Fucoxanthinol, Metabolite of Fucoxanthin, Improves Obesity-Induced Inflammation in Adipocyte Cells. Mar Drugs. 2015 Aug 4;13(8):4799-813. doi: 10.3390/md13084799. PubMed PMID: 26248075; PubMed Central PMCID: PMC4557005.
- Catarino MD, Silva AMS, Cardoso SM. Phycochemical Constituents and Biological Activities of Fucus spp. Mar Drugs. 2018 Jul 27;16(8). pii: E249. doi: 10.3390/md16080249. Review. PubMed PMID: 30060505; PubMed Central PMCID: PMC6117670.
- Gammone MA, Riccioni G, D'Orazio N. Marine Carotenoids against Oxidative Stress: Effects on Human Health. Mar Drugs. 2015 Sep 30;13(10):6226-46. doi: 10.3390/md13106226. Review. PubMed PMID: 26437420; PubMed Central PMCID: PMC4626686.
- Mhadhebi L, Mhadhebi A, Robert J, Bouraoui A. Antioxidant, Anti-inflammatory and Antiproliferative Effects of Aqueous Extracts of Three Mediterranean Brown Seaweeds of the Genus Cystoseira. Iran J Pharm Res. 2014 Winter;13(1):207-20. PubMed PMID: 24734073; PubMed Central PMCID: PMC3985253.
- Kiokias S, Proestos C, Oreopoulou V. Effect of Natural Food Antioxidants against LDL and DNA Oxidative Changes. Antioxidants (Basel). 2018 Oct 3;7(10). pii: E133. doi: 10.3390/antiox7100133. Review. PubMed PMID: 30282925; PubMed Central PMCID: PMC6211048.
- Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019 Jan;69(1):7-34. doi: 10.3322/caac.21551. Epub 2019 Jan 8. PubMed PMID: 30620402.
- Shah SC, Kayamba V, Peek RM Jr, Heimburger D. Cancer Control in Low- and Middle-Income Countries: Is It Time to Consider Screening? J Glob Oncol. 2019 Mar;5:1-8. doi: 10.1200/JGO.18.00200. PubMed PMID: 30908147; PubMed Central PMCID: PMC6452918.
- Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, Znaor A, Bray F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019 Apr 15;144(8):1941-1953. doi: 10.1002/ijc.31937. Epub 2018 Dec 6. PubMed PMID: 30350310.
- Feng RM, Zong YN, Cao SM, Xu RH. Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics? Cancer Commun (Lond). 2019 Apr 29;39(1):22. doi: 10.1186/s40880-019-0368-6. PubMed PMID: 31030667; PubMed Central PMCID: PMC6487510.
- WHO. Latest global cancer data: Cancer burden rises to 18. 1 million new cases and 9. 6 million cancer deaths in 2018. Presse Release, 12 September 2018. Available From: https://www.who.int/cancer/PRGlobocanFinal.pdf
- Schüz J, Espina C, Wild CP. Primary prevention: a need for concerted action. Mol Oncol. 2019 Mar;13(3):567-578. doi: 10.1002/1878-0261.12432. Epub 2019 Jan 18. Review. PubMed PMID: 30582778; PubMed Central PMCID: PMC6396360.
- WHO. Cancer. Health Topics, 12 September 2018. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer
- AK Mohiuddin. Non-drug pain management: opportunities to explore (e-book). Publisher: BiomedGrid LLC, USA May 09, 2019, ISBN: 978-1-946628-01-5.
- WHO. $46 billion in productivity lost to cancer in major emerging economies. Presse Release, 31 January, 2018. Available From: https://www.iarc.fr/wp-content/uploads/2018/07/pr255_E.pdf
- World Cancer Day. Available From: https://www.worldcancerday.org/financial-and-economic-impact
- Olivares-Bañuelos T, Gutiérrez-Rodríguez AG, Méndez-Bellido R, Tovar-Miranda R, Arroyo-Helguera O, Juárez-Portilla C, Meza-Menchaca T, Aguilar-Rosas LE, Hernández-Kelly LCR, Ortega A, Zepeda RC. Brown Seaweed Egregia menziesii's Cytotoxic Activity against Brain Cancer Cell Lines. Molecules. 2019 Jan 11;24(2). pii: E260. doi: 10.3390/molecules24020260. PubMed PMID: 30641974; PubMed Central PMCID: PMC6359252.
- Rocha DHA, Seca AML, Pinto DCGA. Seaweed Secondary Metabolites In Vitro and In Vivo Anticancer Activity. Mar Drugs. 2018 Oct 26;16(11). pii: E410. doi: 10.3390/md16110410. Review. PubMed PMID: 30373208; PubMed Central PMCID: PMC6266495.
- Cho M, Park GM, Kim SN, Amna T, Lee S, Shin WS. Glioblastoma-specific anticancer activity of pheophorbide a from the edible red seaweed Grateloupia elliptica. J Microbiol Biotechnol. 2014 Mar 28;24(3):346-53. PubMed PMID: 24296458.
- Park MN, Song HS, Kim M, Lee MJ, Cho W, Lee HJ, Hwang CH, Kim S, Hwang Y, Kang B, Kim B. Review of Natural Product-Derived Compounds as Potent Antiglioblastoma Drugs. Biomed Res Int. 2017;2017:8139848. doi: 10.1155/2017/8139848. Epub 2017 Oct 18. Review. PubMed PMID: 29181405; PubMed Central PMCID: PMC5664208.
- Florczyk SJ, Kievit FM, Wang K, Erickson AE, Ellenbogen RG, Zhang M. 3D Porous Chitosan-Alginate Scaffolds Promote Proliferation and Enrichment of Cancer Stem-Like Cells. J Mater Chem B. 2016 Oct 14;4(38):6326-6334. doi: 10.1039/C6TB01713D. Epub 2016 Aug 31. PubMed PMID: 28133535; PubMed Central PMCID: PMC5260821.
- Kievit FM, Wang K, Erickson AE, Lan Levengood SK, Ellenbogen RG, Zhang M. Modeling the tumor microenvironment using chitosan-alginate scaffolds to control the stem-like state of glioblastoma cells. Biomater Sci. 2016 Apr;4(4):610-3. doi: 10.1039/c5bm00514k. Epub 2015 Dec 21. PubMed PMID: 26688867; PubMed Central PMCID: PMC4803622.
- Wang K, Kievit FM, Erickson AE, Silber JR, Ellenbogen RG, Zhang M. Culture on 3D Chitosan-Hyaluronic Acid Scaffolds Enhances Stem Cell Marker Expression and Drug Resistance in Human Glioblastoma Cancer Stem Cells. Adv Healthc Mater. 2016 Dec;5(24):3173-3181. doi: 10.1002/adhm.201600684. Epub 2016 Nov 2. PubMed PMID: 27805789; PubMed Central PMCID: PMC5253135.
- Xiao W, Sohrabi A, Seidlits SK. Integrating the glioblastoma microenvironment into engineered experimental models. Future Sci OA. 2017 Mar 24;3(3):FSO189. doi: 10.4155/fsoa-2016-0094. eCollection 2017 Aug. Review. PubMed PMID: 28883992; PubMed Central PMCID: PMC5583655.
- Florczyk SJ, Wang K, Jana S, Wood DL, Sytsma SK, Sham J, Kievit FM, Zhang M. Porous chitosan-hyaluronic acid scaffolds as a mimic of glioblastoma microenvironment ECM. Biomaterials. 2013 Dec;34(38):10143-50. doi: 10.1016/j.biomaterials.2013.09.034. Epub 2013 Sep 26. PubMed PMID: 24075410; PubMed Central PMCID: PMC3843957.
- Palamà IE, D'Amone S, Cortese B. Microenvironmental Rigidity of 3D Scaffolds and Influence on Glioblastoma Cells: A Biomaterial Design Perspective. Front Bioeng Biotechnol. 2018 Sep 24;6:131. doi: 10.3389/fbioe.2018.00131. eCollection 2018. PubMed PMID: 30320080; PubMed Central PMCID: PMC6166390.
- Wang K, Kievit FM, Florczyk SJ, Stephen ZR, Zhang M. 3D Porous Chitosan-Alginate Scaffolds as an In Vitro Model for Evaluating Nanoparticle-Mediated Tumor Targeting and Gene Delivery to Prostate Cancer. Biomacromolecules. 2015 Oct 12;16(10):3362-72. doi: 10.1021/acs.biomac.5b01032. Epub 2015 Sep 16. PubMed PMID: 26347946; PubMed Central PMCID: PMC4831622.
- Musah-Eroje A, Watson S. A novel 3D in vitro model of glioblastoma reveals resistance to temozolomide which was potentiated by hypoxia. J Neurooncol. 2019 Apr;142(2):231-240. doi: 10.1007/s11060-019-03107-0. Epub 2019 Jan 29. PubMed PMID: 30694423; PubMed Central PMCID: PMC6449313.
- Yang J, Li Y, Zhang T, Zhang X. Development of bioactive materials for glioblastoma therapy. Bioact Mater. 2016 Apr 23;1(1):29-38. doi: 10.1016/j.bioactmat.2016.03.003. eCollection 2016 Sep. Review. PubMed PMID: 29744393; PubMed Central PMCID: PMC5883963.
- Wu HL, Fu XY, Cao WQ, Xiang WZ, Hou YJ, Ma JK, Wang Y, Fan CD. Induction of Apoptosis in Human Glioma Cells by Fucoxanthin via Triggering of ROS-Mediated Oxidative Damage and Regulation of MAPKs and PI3K-AKT Pathways. J Agric Food Chem. 2019 Feb 27;67(8):2212-2219. doi: 10.1021/acs.jafc.8b07126. Epub 2019 Feb 13. PubMed PMID: 30688446.
- Afzal S, Garg S, Ishida Y, Terao K, Kaul SC, Wadhwa R. Rat Glioma Cell-Based Functional Characterization of Anti-Stress and Protein Deaggregation Activities in the Marine Carotenoids, Astaxanthin and Fucoxanthin. Mar Drugs. 2019 Mar 23;17(3). pii: E189. doi: 10.3390/md17030189. PubMed PMID: 30909572; PubMed Central PMCID: PMC6470788.
- Garg S, Afzal S, Elwakeel A, Sharma D, Radhakrishnan N, Dhanjal JK, Sundar D, Kaul SC, Wadhwa R. Marine Carotenoid Fucoxanthin Possesses Anti-Metastasis Activity: Molecular Evidence. Mar Drugs. 2019 Jun 5;17(6). pii: E338. doi: 10.3390/md17060338. PubMed PMID: 31195739; PubMed Central PMCID: PMC6627158.
- Miao L, Chi S, Wu M, Liu Z, Li Y. Deregulation of phytoene-β-carotene synthase results in derepression of astaxanthin synthesis at high glucose concentration in Phaffia rhodozyma astaxanthin-overproducing strain MK19. BMC Microbiol. 2019 Jun 15;19(1):133. doi: 10.1186/s12866-019-1507-6. PubMed PMID: 31202260; PubMed Central PMCID: PMC6570914.
- Liu Y, Zheng J, Zhang Y, Wang Z, Yang Y, Bai M, Dai Y. Fucoxanthin Activates Apoptosis via Inhibition of PI3K/Akt/mTOR Pathway and Suppresses Invasion and Migration by Restriction of p38-MMP-2/9 Pathway in Human Glioblastoma Cells. Neurochem Res. 2016 Oct;41(10):2728-2751. Epub 2016 Jul 9. PubMed PMID: 27394418.
- Zhang L, Wang H, Xu J, Zhu J, Ding K. Inhibition of cathepsin S induces autophagy and apoptosis in human glioblastoma cell lines through ROS-mediated PI3K/AKT/mTOR/p70S6K and JNK signaling pathways. Toxicol Lett. 2014 Aug 4;228(3):248-59. doi: 10.1016/j.toxlet.2014.05.015. Epub 2014 May 27. PubMed PMID: 24875536.
- Hormozi M, Ghoreishi S, Baharvand P. Astaxanthin induces apoptosis and increases activity of antioxidant enzymes in LS-180 cells. Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):891-895. doi: 10.1080/21691401.2019.1580286. PubMed PMID: 30873887.
- Lu DY, Chang CS, Yeh WL, Tang CH, Cheung CW, Leung YM, Liu JF, Wong KL. The novel phloroglucinol derivative BFP induces apoptosis of glioma cancer through reactive oxygen species and endoplasmic reticulum stress pathways. Phytomedicine. 2012 Sep 15;19(12):1093-100. doi: 10.1016/j.phymed.2012.06.010. Epub 2012 Jul 21. PubMed PMID: 22819448.
- Pinhatti AV, de Barros FM, de Farias CB, Schwartsmann G, Poser GL, Abujamra AL. Antiproliferative activity of the dimeric phloroglucinol and benzophenone derivatives of Hypericum spp. native to southern Brazil. Anticancer Drugs. 2013 Aug;24(7):699-703. doi: 10.1097/CAD.0b013e3283626626. PubMed PMID: 23669242.
- Jakobs D, Hage-Hülsmann A, Prenner L, Kolb C, Weiser D, Häberlein H. Downregulation of β1 -adrenergic receptors in rat C6 glioblastoma cells by hyperforin and hyperoside from St John's wort. J Pharm Pharmacol. 2013 Jun;65(6):907-15. doi: 10.1111/jphp.12050. Epub 2013 Mar 18. PubMed PMID: 23647684.
- Lai SW, Huang BR, Liu YS, Lin HY, Chen CC, Tsai CF, Lu DY, Lin C. Differential Characterization of Temozolomide-Resistant Human Glioma Cells. Int J Mol Sci. 2018 Jan 2;19(1). pii: E127. doi: 10.3390/ijms19010127. PubMed PMID: 29301329; PubMed Central PMCID: PMC5796076.
- Tsai CF, Yeh WL, Chen JH, Lin C, Huang SS, Lu DY. Osthole suppresses the migratory ability of human glioblastoma multiforme cells via inhibition of focal adhesion kinase-mediated matrix metalloproteinase-13 expression. Int J Mol Sci. 2014 Mar 4;15(3):3889-903. doi: 10.3390/ijms15033889. PubMed PMID: 24599080; PubMed Central PMCID: PMC3975374.
- Alghazwi M, Smid S, Musgrave I, Zhang W. In vitro studies of the neuroprotective activities of astaxanthin and fucoxanthin against amyloid beta (Aβ(1-42)) toxicity and aggregation. Neurochem Int. 2019 Mar;124:215-224. doi: 10.1016/j.neuint.2019.01.010. Epub 2019 Jan 9. PubMed PMID: 30639263.
- Raposo MF, de Morais AM, de Morais RM. Carotenoids from Marine Microalgae: A Valuable Natural Source for the Prevention of Chronic Diseases. Mar Drugs. 2015 Aug 14;13(8):5128-55. doi: 10.3390/md13085128. Review. PubMed PMID: 26287216; PubMed Central PMCID: PMC4557017.
- Peng J, Yuan JP, Wu CF, Wang JH. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Mar Drugs. 2011;9(10):1806-28. doi: 10.3390/md9101806. Epub 2011 Oct 10. Review. PubMed PMID: 22072997; PubMed Central PMCID: PMC3210606.
- Hsu HY, Hwang PA. Clinical applications of fucoidan in translational medicine for adjuvant cancer therapy. Clin Transl Med. 2019 May 1;8(1):15. doi: 10.1186/s40169-019-0234-9. Review. PubMed PMID: 31041568; PubMed Central PMCID: PMC6491526.
- van Weelden G, Bobi?ski M, Ok?a K, van Weelden WJ, Romano A, Pijnenborg JMA. Fucoidan Structure and Activity in Relation to Anti-Cancer Mechanisms. Mar Drugs. 2019 Jan 7;17(1). pii: E32. doi: 10.3390/md17010032. Review. PubMed PMID: 30621045; PubMed Central PMCID: PMC6356449.
- Wang Y, Xing M, Cao Q, Ji A, Liang H, Song S. Biological Activities of Fucoidan and the Factors Mediating Its Therapeutic Effects: A Review of Recent Studies. Mar Drugs. 2019 Mar 20;17(3). pii: E183. doi: 10.3390/md17030183. Review. PubMed PMID: 30897733; PubMed Central PMCID: PMC6471298.
- Misra P, Singh S. Role of cytokines in combinatorial immunotherapeutics of non-small cell lung cancer through systems perspective. Cancer Med. 2019 May;8(5):1976-1995. doi: 10.1002/cam4.2112. Epub 2019 Apr 17. Review. PubMed PMID: 30997737; PubMed Central PMCID: PMC6536974.
- Ercolano G, De Cicco P, Ianaro A. New Drugs from the Sea: Pro-Apoptotic Activity of Sponges and Algae Derived Compounds. Mar Drugs. 2019 Jan 7;17(1). pii: E31. doi: 10.3390/md17010031. Review. PubMed PMID: 30621025; PubMed Central PMCID: PMC6356258.
- Erfani N, Nazemosadat Z, Moein M. Cytotoxic activity of ten algae from the Persian Gulf and Oman Sea on human breast cancer cell lines; MDA-MB-231, MCF-7, and T-47D. Pharmacognosy Res. 2015 Apr-Jun;7(2):133-7. doi: 10.4103/0974-8490.150539. PubMed PMID: 25829786; PubMed Central PMCID: PMC4357963.
- Wu SY, Wu AT, Yuan KS, Liu SH. Brown Seaweed Fucoidan Inhibits Cancer Progression by Dual Regulation of mir-29c/ADAM12 and miR-17-5p/PTEN Axes in Human Breast Cancer Cells. J Cancer. 2016 Dec 9;7(15):2408-2419. eCollection 2016. PubMed PMID: 27994679; PubMed Central PMCID: PMC5166552.
- Moussavou G, Kwak DH, Obiang-Obonou BW, Maranguy CA, Dinzouna-Boutamba SD, Lee DH, Pissibanganga OG, Ko K, Seo JI, Choo YK. Anticancer effects of different seaweeds on human colon and breast cancers. Mar Drugs. 2014 Sep 24;12(9):4898-911. doi: 10.3390/md12094898. Review. PubMed PMID: 25255129; PubMed Central PMCID: PMC4178489.
- Montuori N, Pesapane A, Rossi FW, Giudice V, De Paulis A, Selleri C, Ragno P. Urokinase type plasminogen activator receptor (uPAR) as a new therapeutic target in cancer. Transl Med UniSa. 2016 Nov 1;15:15-21. eCollection 2016 Nov. PubMed PMID: 27896223; PubMed Central PMCID: PMC5120746.
- Teas J, Vena S, Cone DL, Irhimeh M. The consumption of seaweed as a protective factor in the etiology of breast cancer: proof of principle. J Appl Phycol. 2013 Jun;25(3):771-779. Epub 2012 Nov 10. PubMed PMID: 23678231; PubMed Central PMCID: PMC3651528.
- Shamsabadi FT, Khoddami A, Fard SG, Abdullah R, Othman HH, Mohamed S. Comparison of tamoxifen with edible seaweed (Eucheuma cottonii L.) extract in suppressing breast tumor. Nutr Cancer. 2013;65(2):255-62. doi: 10.1080/01635581.2013.756528. PubMed PMID: 23441613.
- Jazzara M, Ghannam A, Soukkarieh C, Murad H. Anti-Proliferative Activity of λ-Carrageenan Through the Induction of Apoptosis in Human Breast Cancer Cells, Int J Cancer Manag. 2016 ; 9(4):e3836. doi: 10.17795/ijcp-3836.
- Groult H, Cousin R, Chot-Plassot C, Maura M, Bridiau N, Piot JM, Maugard T, Fruitier-Arnaudin I. λ-Carrageenan Oligosaccharides of Distinct Anti-Heparanase and Anticoagulant Activities Inhibit MDA-MB-231 Breast Cancer Cell Migration. Mar Drugs. 2019 Feb 27;17(3). pii: E140. doi: 10.3390/md17030140. PubMed PMID: 30818840; PubMed Central PMCID: PMC6471403.
- Losada-Echeberría M, Herranz-López M, Micol V, Barrajón-Catalán E. Polyphenols as Promising Drugs against Main Breast Cancer Signatures. Antioxidants (Basel). 2017 Nov 7;6(4). pii: E88. doi: 10.3390/antiox6040088. Review. PubMed PMID: 29112149; PubMed Central PMCID: PMC5745498.
- Namvar F, Mohamad R, Baharara J, Zafar-Balanejad S, Fargahi F, Rahman HS. Antioxidant, antiproliferative, and antiangiogenesis effects of polyphenol-rich seaweed (Sargassum muticum). Biomed Res Int. 2013;2013:604787. doi: 10.1155/2013/604787. Epub 2013 Sep 4. PubMed PMID: 24078922; PubMed Central PMCID: PMC3776361.
- Niedzwiecki A, Roomi MW, Kalinovsky T, Rath M. Anticancer Efficacy of Polyphenols and Their Combinations. Nutrients. 2016 Sep 9;8(9). pii: E552. doi: 10.3390/nu8090552. Review. PubMed PMID: 27618095; PubMed Central PMCID: PMC5037537.
- Kapinova A, Kubatka P, Golubnitschaja O, Kello M, Zubor P, Solar P, Pec M. Dietary phytochemicals in breast cancer research: anticancer effects and potential utility for effective chemoprevention. Environ Health Prev Med. 2018 Aug 9;23(1):36. doi: 10.1186/s12199-018-0724-1. Review. PubMed PMID: 30092754; PubMed Central PMCID: PMC6085646.
- Keating E, Martel F. Antimetabolic Effects of Polyphenols in Breast Cancer Cells: Focus on Glucose Uptake and Metabolism. Front Nutr. 2018 Apr 16;5:25. doi: 10.3389/fnut.2018.00025. eCollection 2018. Review. PubMed PMID: 29713632; PubMed Central PMCID: PMC5911477.
- Sudhakaran M, Sardesai S, Doseff AI. Flavonoids: New Frontier for Immuno-Regulation and Breast Cancer Control. Antioxidants (Basel). 2019 Apr 16;8(4). pii: E103. doi: 10.3390/antiox8040103. Review. PubMed PMID: 30995775; PubMed Central PMCID: PMC6523469.
- Hui C, Qi X, Qianyong Z, Xiaoli P, Jundong Z, Mantian M. Flavonoids, flavonoid subclasses and breast cancer risk: a meta-ana