ABSTRACT
Molecular docking has been accrued and ameliorating for many years, but its ability to bring a medicine to the drug market influentially is still generally questioned. It is nothing but a theoretical transcript method based on bioinformatics, which studies the interaction between molecules [ie, ligands and receptors], and predicts their binding modes and a?nity via a computer platform. Here we introduce several successful cases including drugs for treatment of prevalent diseases. An eminent advantages of molecular docking such as predicting experiments are arresting increasing attention for its application potential in various ?elds. It provide us with confidence that the docking will be extensively employed in the industry and basic research. Moreover,we can actively apply molecular docking and related technology to create new therapies for disease. This review presents the theory and software development of molecular docking, and emphasises its application in the ?eld of medicines, food science, including nutritional components and food safety.
Keywords : Molecular docking, food, interaction, mechanism, computational drug design.
1] Brooijmans, N. & Kuntz, I.D. (2003). Molecular recognition and docking algorithms. Annual Review of Biophysics and Biomolecular Structure, 32, 335–373.
2] Ferreira, L.G., dos Santos, R.N., Oliva, G. & Andricopulo, A.D. (2015). Molecular docking and structure-based drug design strate- gies. Molecules, 20, 13384–13421.
[3] San-Martin, A., Donoso, V., Leiva, S. et al. (2015). Current Topics in Medicinal Chemistry, 15, 1743–1749.
[4] Roche, D.B., Brackenridge, D.A. & McGu?n, L.J. (2015). International Journal of Molecular Sciences, 16, 29829–29842.
[5] Salmaso, V. & Moro, S. (2018). Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition cess: an overview. Frontiers in Pharmacology, 9,923.
Salmaso, V., Sturlese, M., Cuzzolin, A. & Moro, S. (2018). Journal of Computer- Aided Molecular Design, 32, 251–264.
[6] Yue, Y.Y., Zhao, S.F., Liu, J.M., Yan, X.Y. & Sun, Y.Y. (2017a). Chemosphere, 185, 1056–1062.
Yue, Y.Y., Zhao, S.F., Sun, Y.Y., Yan, X.Y., Liu, J.M. & Zhang,J.(2017b). Journal of Luminescence, 187, 333–339.
[7] Wang, Y.Q., Zhang, H.M., Kang, Y.J., Gu, Y.L. & Cao, J. (2016b). Journal of Molecular Structure, 1107, 91– 98.
Mohseni-Shahri, F.S., Moeinpour, F. & Nosrati, M. (2018). Spectroscopy and molecular dynamics simulation study on the interac- tion of sunset yellow food additive with pepsin. International Journal of Biological Macromolecules, 115,273–280.
[8] Wang, J., Chan, C., Huang, F.W. et al. (2017a). Interaction mecha- nism of pepsin with a natural inhibitor gastrodin studied by spec- troscopic methods and molecular docking. Medicinal Chemistry Research, 26, 405–413.
[9] Manikkam, V., Vasiljevic, T., Donkor, O.N. & Mathai, M.L. (2016). Critical Reviews in Food Science and Nutrition, 56, 92– 112.
[10] Agyei, D.& Danquah, M.K.(2012). Tu, M.L., Cheng, S.Z., Lu, W.H. & Du, M. (2018). TracTrends in Analytical Chemistry, 105, 7–17.
[11] Udenigwe, C.C. (2014). Trends in Food Science & Technology, 36,137–143.
[12] Panyayai, T., Sangsawad, P., Pacharawongsakda, E., Sawatdichaikul, O., Tongsima, S. & Choowongkomon, K. (2018). Computational Biology and Chemistry, 77,207–213.
[13] Mandal, S.M., Porto, W.Biochimie,95,1939–1948. Journal of Food Science and Technology-Mysore, 53, 1222–1229.
Ouertani, A., Chaabouni, I., Mosbah, A. et al. (2018). Frontiers in Microbiology, 9,1148.
[14] Xue, Z.H., Wen, H.C., Zhai, L.J. et al. (2015). Antioxidant activity and anti-proliferative e?ect of a bioactive peptide from chickpea (Cicer arietinum L.). Food Research International, 77, 75–81.
Mojica, L. & de Mejia, E.G. (2016). Optimization of enzymatic production of anti-diabetic peptides from black bean (Phaseolus garis L.) proteins, their characterization and biological Food & Function, 7,713–727.
[15] Liu, C.L., Fang, L., Min, W.H., Liu, J.S. & Li, H.M. (2018a). Food Chemistry, 245, 471–480.
[16] Dettori, L., Jelsch, C., Guiavarc’h, Y., Delaunay, S., Framboisier, X. & Chevalot, I. (2018). Process Biochemistry, 74, 50–60.
[17] Liu, Z., Liu, Y., Zeng, G. et al. (2018b). Application of molecular docking for the degradation of organic pollutants in the environ- mental remediation: a review. Chemosphere, 203, 139–150.
[18] Hartmann,A.,Gostner,J.,Fuchs,J.E.et al.(2015).Planta Medica, 81, 813–820.
[19] Yang, Y., Qian, J. & Ming, D. (2015). Carbohydrate Research, 414, 78–84.
Wang, Y.Q., Wang, Y., Luo, Q., Zhang, H.M. & Cao, J. (2019d). Molecular characterization of the e?ects of Ganoderma Lucidum polysaccharides on the structure and activity of bovine serum albu- min. Spectrochimica Acta Part a-Molecular and Biomolecular Spec- troscopy, 206, 538–546.
[20] Trichez, D., Knychala, M.M., Figueiredo, C.M. et al. (2019). Key amino acid residues of the AGT1 permease required for totriose consumption and fermentation by Saccharomyces visiae. Journal of Applied Microbiology, 126,580–594.
[21] Xu, W., Ni, D.W., Yu, S.H., Zhang, T. & Mu, W.M. (2018). International Journal of Biological Macromolecules, 116, 335–345.
[22] Li,J.Q.,Geng,S.,Liu,B.G.,Wang,H.B.&Liang,G.Z.(2018). Self-assembled mechanism of hydrophobic amino acids and beta- cyclodextrin based on experimental and computational methods. Food Research International, 112, 136–142.
[23] Goel,A.,Gajula,K.,Gupta,R.&Rai,B.(2018).In-silicopredic- tion of sweetness using structure-activity relationship models. Food Chemistry, 253, 127–131.
[24] Goel,A.,Gajula,K.,Gupta,R.&Rai,B.(2018).In-silicopredic- tion of sweetness using structure-activity relationship models. Food Chemistry, 253, 127–131.
Kato-Schwartz, C.G., Bracht, F., Goncalves, G.D. et al. (2018). Inhibition of alpha-amylases by pentagalloyl glucose: kinetics, molecular dynamics and consequences for starch absorption. Jour- nal of Functional Foods, 44, 265–273.
[25] Du, X.P., Bai, M.L., Huang, Y. et al. (2018). Journal of Functional Foods, 48, 551–557.
[26] Zulfakar, M.H., Chan, L.M., Rehman, K., Wai, L.K. & Heard,C.M. (2018). An O?cial Journal of the American Associ- ation of Pharmaceutical Scientists, 19, 1116–1123.
[27] Kotler, S.A., Walsh, P., Brender, J.R. & Ramamoorthy, A. (2014). Di?erences between amyloid-beta aggregation in solution and on the membrane: insights into elucidation of the mechanistic details of Alzheimer’s disease. Chemical Society Reviews, 43, 6692–6700.
[28] Rong, C.C., Chen, H.Q., Tang, X. et al. (2019). Characterization and molecular docking of new 17 fatty acid desaturase genes from Rhizophagus irregularis and Octopus bimaculoides. Rsc Advances, 9, 6871–6880.
[29] Zhu, Z., Chen, J., Wang, G. et al. (2019). Ceramide regulates inter- action of Hsd17b4 with Pex5 and function of peroxisomes. Biochimica et biophysica acta. Molecular and Cell Biology of Lipids, 1864(10), 1514–1524.
Khayat, S., Fanaei, H. & Ghanbarzehi, A. (2017). Minerals in pregnancy and lactation: a review article. Journal of Clinical and Diag- nostic Research, 11, Qe1-Qe5.
[31] Subramanian, V.S., Sabui, S., Teafatiller, T., Bohl, J.A. & Said, H.M. (2017). American Journal of Physiology-Cell Physiology, 313, C228–C238.
[32] Borah, P.K., Sarkar, A. & Duary, R.K. (2019). Water-soluble vitamins for controlling starch digestion: conformationalscrambling and inhibition mechanism of human pancreatic alpha-amylase ascorbicacidandfolicacid.Food Chemistry,288,395–404.
[33] Saini, V. & Kumar, A. (2014). Sar and Qsar in Environmental Research, 25, 777–790.
[34] Zhang, Q.L. & Ni, Y.N. (2017). Rsc Advances, 7, 39833–39841.
[35] Wang, J.P., Dong, J., Duan, C.F. et al. (2016a). Journal of Agricultural and Food Chemistry, 64, 7957–7965.
[36] Argudin, M.A., Mendoza, M.C. & Rodicio, M.R. (2010). Food poisoning and staphylococcus aureus enterotoxins. Toxins, 2, 1751– 1773.
[37] Shimamura, Y., Utsumi, M., Hirai, C. et al. (2018). Binding of cate- chins to staphylococcal enterotoxin A. Molecules, 23, pii: E1125.
[38] Kar, S., Mishra, R.K., Pathak, A., Dikshit, A. & Rao, G.N. (2018). Journal of Molecular Structure, 1156, 433–440.
[39] Rajarathinam, G. & Dronamraju, S.V.L. (2018). In vitro and in silico antimicrobial activity of sterol and ?avonoid isolated from Tri- anthema decandra L. Microbial Pathogenesis, 121, 77–86.
[40] Cleland, W.W. (2010). The low-barrier hydrogen bond in enzymic catalysis. Advances in Physical Organic Chemistry, 44(44), 1–17.
Liu, Z.Y., Hu, J.W., Huang, C.H. et al. (2019). Journal of the American Chemical Society, 141,9885–9894.
[41] Wu, C., Ma, W.C. & Hua, Y.F. (2019a). International Journal of Food Science and Technology, 54,231–239.
[42] Moorthy NS, Poongavanam Pratheepa Mini Reviews in Medicinal 14(10):819-830
[43] Moscona A. Neuraminidase inhibitors for influenza. The New England Journal of icine.2005;353(13):1363-1373
[44] Hayden FG, Belshe RB, Clover RD, Hay AJ, Oakes MG, Soo The New England Journal of Medicine.1989;321(25):1696-1702
45] Alves Galvao MG, Rocha Crispino Santos MA, Alves da Cunha AJ. Cochrane Database Systematic Review. 2014;11. CD002745
[46] Newton CR, Krishna S. &
[47] Wellems TE. Malaria. How chloroquine works. Nature. 1992;355(6356):108-109
[48] Chinappi M, Via A, Marcatili P, Tramontano A. PLoSOne.2010;5(11)
49] Kumari M, Chandra S, Tiwari N, Subbarao N. 3D QSAR, pharmacophore and molecular docking studies. BMC Structural Biology. 2016;16(12)
50] Hershkovitz I, Donoghue HD, Minnikin DE, Besra GS, Lee OY, Gernaey AM, Galili E, Eshed V, Greenblatt CL, Lemma E, et al. Detection and molecular characterization of 9,000-year-old mycobacterium tuberculosis from a Neolithic settlement in the eastern Mediterranean. PLoS One. 2008;3(10):e3426
[51] KeshavjeeS,FarmerPE.Tuberculosis,drugresistance,andthehistoryofmodernmed- icine.TheNewEnglandJournalofMedicine.2012;367(10):931-936
[52] Centers for Disease and .
[53] Velayati AA, Masjedi MR, Farnia P, Tabarsi P, Ghanavi J, ZiaZarifi AH, Hoffner SE.. 2009;136(2): 420-425
54] Ratledge C, Patel PV, Mundy J. Iron transport in mycobacterium smegmatis: The loca- tion of mycobactin by electron microscopy. Journal of General Microbiology. 1982;128(7): 1559-1565.
55] Vianna CP, de Azevedo WF, Jr.: Identification of new potential mycobacterium tubercu- losis shikimate kinase inhibitors through molecular docking simulations. Journal of Molecular Modeling. 2012;18(2):755-764
[56] Sikka Chattu VK, Popli RK, Galwankar SC, Kelkar D, Sawicki SG, Stawicki SP, PapadimosTJ. Journal Global Infectious Disease.2016;8(1):3-15
[57] Cao-Lormeau VM, Blake A, Mons S, Lastere S, Roche C, Vanhomwegen J, Dub BaudouinL,TeissierA,LarreP,etal.2016;387(10027): 1531-1539
58] Duffy MR, Chen TH, Hancock WT, Powers AM, Kool JL, Lanciotti RS, Pretrick M, Marfel M, Holzbauer S, Dubray C, et al. The New England Journal of Medicine. 2009;360(24):2536-2543.
59] Musso D. Zika virus transmission from French Polynesia to Brazil. Emerging Infectious Diseases. 2015;21(10):1887.
[60] DongHP,FinkK,ZustR,LimSP,QinShiPY.FlavivirusRNAmethylation.Journal of General 2014;95:763-778.
61] Zhang C, Feng T, Cheng J, Li Y, Yin X, Zeng W, Jin X, Li Y, Guo F, Jin T. Biochemical and Biophysical Research Communications; 2016.
62] Ramharack P, Soliman MES. Journal of Biomolecular Structure & Dynamics. 2017:1-16.
63] Sacramento CQ, de Melo GR, de Freitas CS, Rocha N, Hoelz LV, Miranda M, Fintelman- Rodrigues N, Marttorelli A, Ferreira AC, Barbosa-Lima G et al: The clinically approved antiviral drug sofosbuvir inhibits Zika virus replication. Scientific Reports. 2017;7:40920.